
Planning Large Data Transfers in Institutional Grids

Fatiha Bouabache
Universite Paris Sud-XI, F-91405;

INRIA
Email: fatiha.bouabache@lri.fr

Thomas Herault
Universite Paris Sud-XI, F-91405; INRIA;

University of Tennessee
Email: thomas.herault@lri.fr

Sylvain Peyronnet
Universite Paris Sud-XI, F-91405;

INRIA
Email: syp@lri.fr

Franck Cappello
INRIA; University of Urbana Champaign;

Universite Paris Sud-XI, F-91405
Email: franck.cappello@lri.fr

Abstract—In grid computing, many scientific and engineer-
ing applications require access to large amounts of distributed
data. The size and number of these data collections has
been growing rapidly in recent years. The costs of data
transmission take a significant part of the global execution time.
When communication streams flow concurrently on shared
links, transport control protocols have issues allocating fair
bandwidth to all the streams, and the network becomes sub-
optimally used. One way to deal with this situation is to
schedule the communications in a way that will induce an
optimal use of the network.
We focus on the case of large data transfers that can be

completely described at the initialization time. In this case, a
plan of data migration can be computed at initialization time,
and then executed. However, this computation phase must take
a small time when compared to the actual execution of the plan.
We propose a best effort solution, to compute approximately,
based on the uniform random sampling of possible schedules,
a communication plan. We show the effectiveness of this
approach both theoretically and by simulations.

Keywords-Scheduling, Data Transfer

I. INTRODUCTION

A Grid is an infrastructure consisting of the aggregation
of several distributed resources, usually from different ad-
ministrative domains. We focus on cluster of clusters, i.e.
grids built by companies and universities by aggregating the
resources of several clusters. Users expect to obtain, from
the use of such a grid, larger systems able to address the
complexity of their problems. One of the features of a Grid
is its size, orders of magnitude larger than a single cluster.
In grid computing, many applications require access to

large amounts of distributed data. More specifically, a major
source of large data transfer comes from a characteristic of
large scale grids. Having a high number of components also
implies that the overall probability of failure of one of the
multiple components of the Grid is high. Hence, fault tol-
erance is a feature of Grids recognized as critical. Rollback
recovery is the most common fault tolerance technique used
in High Performance Computing and scientific applications.
This technique relies on the reliability of the checkpoint

storage system to ensure fault tolerance. To ensure check-
point storage reliability of coordinated rollback/recovery
protocols, we proposed to replicate the checkpoint images
over a set of checkpoint servers distributed over the different
clusters [1]. Storing these images in the same cluster they
were generated is not reliable, because the link between two
clusters may be broken (due to a failure of a gateway for
example) or overloaded. During a checkpoint wave and espe-
cially during the replication step, huge amounts of data flow
between the different components, and between clusters,
which may increase the checkpoint wave completion time,
and introduce unusual loads on the links between clusters.
A key point of an efficient data transfer is to ensure that

the network protocol used to control the transfers will not
enter a “thrashing” state, where the allowed bandwidth is
drastically reduced because the system is unable to evaluate
the requirements of the application. It has been proven that
scheduling of (TCP) communications in Grids, or wide-area
networks in general, is fundamental for efficiency reasons.
To do this, different solutions exist (see section II).

However, most of these solutions are interactive and adapt
their execution during the transfer. In our case, the location
of the data and the destination goal are both given by the
replication strategy, and data are available almost simultane-
ously due to the coordination of the checkpoint mechanism.
Hence, a global communication plan can be computed, that
takes as input the two configurations, and the system needs
to compute a data migration plan that convert the initial
configuration (before replication) to the final configuration
(after replication). This migration schedule tries to minimize
the time taken to complete the whole migration.
Such planning problem is widely believed to be compu-

tationally intractable. Exhaustive approaches are subject to
exponential combinatorial explosion. A classical approach
to deal with such phenomenon is to design highly efficient
but approximate algorithms. In this paper, we present an
approximation algorithm based on the uniform random sam-
pling of possible schedules. We show the effectiveness of
this approach both theoretically and by simulation.

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

978-0-7695-4039-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CCGRID.2010.68

547

II. RELATED WORK

The problem of scheduling concurrent huge data transfers
in Grid technology has been addressed from different point
of views in the literature.
Network bandwidth is one of the primary parameters

that impact the performance. The paper [2] considers the
problem of huge data transfers and bandwidth sharing in
grid infrastructure, where transfer delay bounds are required.
This study is based on a scheduling service controlling the
starting time and the congestion level. Marchal et al. in [3]
addresse the problem of optimal resource sharing to avoid
potential bottlenecks. Two resource request scenarios have
been identified, aiming at optimizing the request accept rate
and resource utilization. The optimization problems, proven
NP-complete, are then solved by heuristic algorithms.
The resource reservation technique in general and band-

width reservation specially is widely used to manage the
bulk data transfer, whether to avoid congestion or to min-
imize the transfer time. In general there are two types of
reservation: immediate reservations made just in time and
advance reservations which allow to reserve a resource a
long time before its use. However, the most useful tech-
nique in grid computing is the advance reservation. Several
solutions consider the data transfer problem using the QoS
and the resource reservation issues. Zhang et al. [4] propose
an agreement-based data transfer service, providing some
QoS guarantees. The service allows the client to express
agreements for quality of data transfer. Those agreements
are based on certain QoS metrics, such as the transfer time.
Zhang et al. evaluate three prototype implementations of this
service using mechanisms of traffic prediction, rate-limiting
and priority based adaptation.
Flow scheduling is one of new alternative solutions to

traditional QoS and reservation. In [5], Marchal et al.
propose to schedule the data transfer requests by tuning
the transmission window, such that the request accept rate
and network resource utilisation will be optimized. They
propose a bandwidth sharing optimisation objective specific
to the grid context. The optimisation problem was proven
to be NP-complete, so heuristics was proposed and studied
using simulations. Authors of [6] study the bulk data transfer
scheduling problem. The goal is to find the optimal band-
width allocation profile for each task minimizing the overall
congestion. They propose a multi-interval scheduling, where
the active window of a task is divided into multiple intervals,
and bandwidth value is assigned independently in each
of them. They prove that this technique is sufficient and
necessary to attain the optimum. Specifically, they show
that the problem can be solved as Maximum Concurrent
Flow Problem in a polynomial time. In the same direc-
tion, [7] addresses the need of network dimensioning for
bulk data transfers in Grid networks and introduces an
M/M/1/M − RPS queue model to predict the blocking

probability of bulk data transfer requests. The different flow
scheduling solutions are generally based on runtime end-
hosts mechanisms, controlling flow sending time and rate.
[8] explore the end-host based mechanisms. It quantifies and
compares the end-host based mechanisms and studies their
interaction with transport protocols.
Recently, another approach proposed in [9] has described

somes links between maximum-flow computations and sub-
modular energy minization. Such an approach could give
some insights in solving the same challenge via another
approach.
Compared with these scheduling solutions, we consider

a public internet network, where source routing is not
necessarily enabled, so it is a complex task to control all
the path connecting two nodes. Moreover, we consider a
checkpoint image storage so that all the different request are
present at the same time and computing a plan is possible.
There is a global goal, which is to reduce the global time
taken to terminate all the transfers.

III. SCHEDULING DATA TRANSFERS

Our grid spans multiple domains and uses Internet to
connect between the different clusters. On such environment
there is a set of system constraints that we cannot control, eg.
we have no control over the routing tables and the failures
that can occur. So it is a complex task to control all the path
connecting two nodes. For this reason, we propose a best-
effort solution: we control only which source node is allowed
to send to its destination node (following a communication
path depending on the routing tables of the system) at a
given time. We assume that the routing tables of the system
balance the load of the communication between the different
links, and that bandwidth sharing is possible.
We model our problem as a multiflow network: Let G =

(V, E) be a flow network represented by a directed graph,
where V is the set of nodes in the network and E the set
of the different edges. Each edge (u, v) ∈ E has a capacity
c(u, v) > 0. c(u, v) is the maximum amount of data that can
pass through the edge connecting u to v. S = {0, 1, ..., n−
1} and T = {t0, t1, ..., tn − 1} are two disjoint subsets of
V , representing, respectively, the sources and sinks in the
Network. They have the same cardinal n representing the
number of flows that have to be transferred. fi is the flow
that has to be sent from si to ti. f i

uv is the flow i pushed from
u to v, thus we have the capacity constraint

∑n−1
i=0 f i

uv ≤ cuv

for each (u, v) ∈ E.
We denote by R the set of data transfer requests, and

we consider t(s) the function that, for each source s,
gives the corresponding sink. We consider a set of data
transfer requests represented by pairs (s, νs), where s is the
source and νs the volume of data that has to be transferred
from the source s to the destination t(s). The number of
data transfer requests is equal to the number of sources

548

card(R) = card(S), and each request represents a different
data transfer task.
P(R) denotes the set of all permutations of all the

elements of the set R. The cardinal of P(R) is n!. Each
permutation vector τi of P(R) contains all the elements of
R. A permutation defines an order of priority on the sources:
if (si, νsi

) appears before (sj , νsj
) in a permutation τ , then

the source si will be considered for transmission before the
source sj in this permutation.
Our goal is to find an optimal order of the sources, for

moving all data from all sources to all destinations, that
minimize the time taken to complete all the migrations. So,
we want with our scheduling multiflow algorithm to find
the optimal permutation that minimizes the time taken to
complete the migration or the execution of tasks in R.
The exhaustive scheduling multiflow algorithm (3) is

based on two main functions the flow function (1) and the
T imeMultif low function (2).

Algorithm 1 flow(G, s)

Require: G: the flow network.
Require: s: a source
Computes: (RG, c), where RG is the residual graph and c
is the capacity of the maximal flow with source s on flow
network G
Use the push-relabel algorithm [10]

The role of the flow function is to compute, for each
different combination, the quantity of data that can be
transferred on one step by each source within the combi-
nation. We base our flow function on the classical push−
and − relabel maxflow algorithm [10]. While the general
algorithm has O(V 2E) time complexity, the implementation
with FIFO vertex selection rule has O(V 3) running time.
This algorithm takes as an input the flow graph G and the
source s, and computes the quantity of data that can be
transferred from s to t(s) on one step. In our case, the flow
function gives also the residual graph.
The goal of the T imeMultif low function is to compute

for each combination the time taken to execute all the
different tasks according to their order in this combination.
So, it takes as an input the graph G and the combination that
it has to study τi. This function gets the different couples
within τt, one by one, from τt[0] (the greatest priority) to
τt[n − 1] (the lowest priority). For each couple, it calls
the flow function that take the corresponding source s
and the graph G. As we can see, only the first call will
be executed on the initial graph, the following calls are
executed on the residual graph RG. When the capacity C(s)
of this source s is computed, the T imeMultif low function
computes the time T (s) needed to transfer νs. Once all the
couples within τt are considered, the time these concurrent
flows can be sustained is computed, as the smallest time it
takes to exhaust one of the sources. Then, only the couples

Algorithm 2 T imeMultif low(G, τi)

Require: G: the flow network.
Require: τi: sequence of couples (s, νs), s being a source,

νs the size of the data to transmit from this source.
Computes: Ttotal, the time used to transfer all data from
all sources to all sinks, following the order of τi.
Ttotal ← 0
τt ← τi

while τt �= ∅ do
RG =← G
for all (s, νs) ∈ τt do

(RG, c)← flow(RG, s)
C(s) ← c
T (s)← νs/C(s)

end for
T ← mins∈τi

{T (s)}
Ttotal ← Ttotal + T
τt ← {(s, νs−T.C(s))/(s, νs) ∈ τt∧νs−T.C(s) �= 0}

end while
return (Ttotal, τi)

that have a transmission time greater than the smaller one
are put in the new τt according to the initial order in τi.
For each couple in the new τt, the data volume that has
to be transferred is updated by subtracting the amount of
data that was transferred during the previous step. This is
executed until τt becomes empty. τt eventually becomes
empty, because if any couple (s, νs) remains in τt, at some
iteration, s is the only source with a non-negative νs, thus
in the next iteration, this source must be selected and can be
selected, because the algorithm restarts from the initial flow
graph. At the end, the T imeMultif low function returns a
pair of the total transmission time and the corresponding
initial combination (Ttotal, τi).
The goal of the scheduling multiflow algorithm is to

find the smallest transmission time and the associated com-
bination. It takes as inputs G and R. It initializes the
mintime Tmin. Then, for each combination τi ∈ P(R),
it calls the T imeMultif low function that computes the
time needed to execute all the data transfer requests. It then
updates the minimum time Tmin. When all the combinations
have been considered, it returns the minimum time and the
corresponding combination (Tmin, τmin).

IV. APPROXIMATE SCHEDULING ALGORITHM
As said above, the exhaustive algorithm to find the

combination that leads to the best transfer time is subject
to combinatorial explosion. This means that regardless the
time complexity of the algorithm, the size of the input is
so large that the problem becomes practically intractable.
A classical approach to deal with such phenomenon is to
design highly efficient but approximate algorithms. Highly
efficient means that either the complexity is sub-linear (most

549

Algorithm 3 ExhautiveMultif low(G, R)

Require: G: the flow network
Require: R: a set of couples (s, νs), where s is a source,
and νs the size of the data this source wants to transmits

Computes: the minimal time needed to transmit this data
Tmin ← +∞
for all τi ∈ P(X) do

(T, τ) ← T imeMultif low(G, τi)
if T < Tmin then

Tmin ← T
τmin ← τ

end if
end for
return (Tmin, τmin)

of the time polynomial in the logarithm of the input size)
or even independent of the size of the input.
In this section, we propose an approximation algorithm

based on the uniform random sampling of possible sched-
ules. The algorithm is described formally in Figure 4. The
principle is quite simple. It consists in repeating a given
number of time the following process: a combination of the
sources is chosen uniformly at random. Then the transfer
time for this combination is computed. If this transfer time
is lower than previously computed ones, then it becomes the
potential lower transfer time and the associated ordering of
sources the best combination. After a while, the minimum
from the sampled transfer times (and associated combina-
tion) is considered the best choice. The critical point of the
algorithm is thus the computation of the number of randomly
chosen combinations that are needed to obtain one of the
smallest value. We call this number the sample size of the
approximation algorithm.
This size is independent of the size of the input (the size of

the graph). However, it depends on two new parameters. The
accuracy parameter ε defines the quality of the result of the
approximation algorithm, while the confidence parameter, δ,
gives the confidence in the result.
Intuitively, these two parameters mean that the output of

the algorithm falls into the fraction ε of smallest values
with probability 1 − δ. δ is typically set to a very small
value, meaning that the probability of our algorithm to give
a correct answer is close to 1. The setting for ε is highly
dependent of the trade-off between the average transfer time
and the time that can be spent in finding a better one. The
sample size used in our algorithm is 1

ε · ln(1
δ).

The following lemma proves the correctness of our algo-
rithm with this sample size. The density of a given class
C corresponds to the fraction of values we consider into a
set of n values. For us it means that we are sure that the
output of the approximation algorithm is in the ε·|n| smallest
transfer times (where n is the number of different possible
transfer times).

Algorithm 4 ApproximateMinT ime(G, R, δ, ε)

Require: G: the flow network
Require: R: a set of couples (s, νs), where s is a source,
and νs the size of the data this source needs to transmits.

Require: δ: confidence parameter
Require: ε: accuracy parameter
Computes: an approximation of the minimal time needed
to transmit this data with accuracy ε, and confidence δ
Tmin ← +∞
N ← 1

ε · ln(1
δ)

for i ← 1..N do
pick τ ∈ P(R) uniformly at random
(T, τ) ← T imeMultif low(G, τ)
if T < Tmin then

Tmin ← T
τmin ← τ

end if
end for
return (Tmin, τmin)

Lemma 1: Suppose that the density of a given class C
of items is ε (that is there are ε · n elements of this class
in the whole set of n items). Then, by drawing uniformly
at random 1

ε · ln(1
δ), the probability of having at least one

element of the class C is 1− δ.
Proof: We compute the probability not to found such

an item. Let denote by E the event of not drawing an item
from C after drawing s random items. We are interested in
the value of s.

prob[E] = (1− ε)s ≤ es·ε

if we take s = 1
ε · ln(1

δ), then we obtain:

prob[E] ≤ e−(1/ε)·ε·ln(1

δ ≤ δ

Since the event we are interested in is the complementary
event to E, then the result holds.

V. EVALUATION

On the one hand, the goal of this section is to show that
with the sampling approach of the approximate algorithm,
we can find a combination that gives a transfer time close
to the optimal. To prove that we are close to the optimal,
we execute the exhaustive scheduling algorithm so that we
can have all the different possible transfer time. On the
other hand, one of the main objectives of this study is to
examine our protocol behavior in realistic architecture which
approaches the structure of the Grid as closely as possible.
However, with the exhaustive scheduling algorithm, the
number of possible schedules explodes. To overcome this
problem, we use at first a synthetic graph to study the
effectiveness of the approximate algorithm.

550

A. Synthetic graph
We consider the synthetic graph depicted in figure 1.

We note this graph SG11 = (V, E) where card(V) = 42
and card(E) = 50. In this graph, sources belong to a set
S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and destinations to T =
{t(0), t(1), t(2), t(3), t(4), t(5), t(6), t(7), t(8), t(9), t(10)}.
Each source s has to transfer νs = 20000Mb, so

we have 11 different transfer tasks: card(R) = 11.
There is 39, 916, 800 different task combinations (11! =
39, 916, 800).

Figure 1. Synthetic graph SG11

The exhaustive algorithm
Figure 2 shows the distribution of transfer times in

the task combinations space of SG11. For each possi-
ble combination τi of tasks, we compute the result of
T imeMultif low(SG11, τi), and count the number of com-
binations producing a given time. We plot the number of
task combinations on a logarithmic scale, and we observe
that the transfer time ranges from 62s to 490s (factor of
roughly 8 between the smallest and the highest). The goal
of our algorithm is to find the smallest transmission time
by sampling randomly source combinations. Since some
transfer times have a very high probability to appear, a
single random choice is likely to give it. In this case, that
would give a transfer time between 200s and 300s. Still,
it is noticeable that transfer times lower than 100s have a
cumulated number of occurrences high enough to be chosen.

Figure 2. Number of sources combinations vs. transmission time, for
SG11

The approximate algorithm
Figure 3 represents the probability to find a combination

of tasks with a transfer time lower than a given time, as

function of the size of samples (N in Section IV) used to
iterate in the approximate algorithm. This probability has
been estimated as the mean value of 1,000 runs of the
algorithm.

Figure 3. Probability to find a combination of sources with a transmission
time lower than a given time, as function of the size of samples for SG11

This figure illustrates that even with a sample including
a low number of combinations, the algorithm provides with
high probability a transfer time much lower than the average
transfer time. It also shows a trade-off between the sample
size and the performance of the scheduling. A larger sample
implies a lower transfer time, but also a larger overhead to
compute the schedule. One can see that when we try to get a
better approximation, closer to the optimal time of 62s, the
probability to find a combination that corresponds to this
time increases very slowly with the sample size.
This is illustrated by Figure 4. This figure is the same

representation as Figure 3, with a single goal: the optimal
schedule (mintime = 62s). One can see that a very large
sample is mandatory to find this schedule with a high
probability. This is inherent to sampling methods: it is very
costly to find the optimal value, but very cheap to find values
close to the optimal. This is confirmed by the theoretical
result obtained from the formula 1

ε · ln(1
δ).

Figure 4. Probability to find a combination of sources with a transfer time
equals to the optimal time, as function of the size of samples for SG11

551

To say that we have a better schedule, the sum of the
mintime found and the time required to find it has to be
lower than the average transmission time. To address this
issue we execute the approximate algorithm with different
sample sizes (one run by sample) and we measure the
algorithm execution time. As expected, the execution time is
proportional to the sample size. Using realistic numbers for
the capacity of the links, relative to the size of data to be
transmitted, we still save a significant time. For example
with a sample size equal to N = 600, wa can have a
transfer time inferior to 80s with a great probability, and
an algorithm execution time equal to 15s.

B. Grid’5000
In this section, we consider the grid5000 [11] architecture.

We model it by a graph GG = (V, E) where card(V) = 154
and card(E) = 182. We have 62 requests, card(S) =
card(R) = 62, and each source has to transfer 50 GB.
In such environment, cardP(R) = 3.14699733(1085), it is
intractable to use the exhaustive algorithm. So, we use the
approximate algorithm with a sample of size 106. The lowest
transfer time found is T = 307s
From the formula, T = 307s is the smallest value of 97%

of the possible schedules. Even if the time T = 307 is not
the optimal one, it is obtained with a probability equal to
0.75 with a sample having size N = 20 (see Figure 5). This
can be done in 17.95s. So the global time is 324.95s, which
still lower than the average transmission time obtained with
the sample of 106 combinations.

Figure 5. Probability to find a combination of sources with a transmission
time equals to the optimal time, as function of the size of samples for GG

VI. CONCLUSIONS
We have considered a bulk data transfer problem and

especially a checkpoint images transfer. In the context of
data Grid technology, this problem is considered as a very
important issue. We have proposed a best effort scheduling
to compute a communication plan when all communications
that have to be scheduled are known at the initialization time.
To avoid the factorial combinatorial explosion of an exact

and exhaustive algorithm, we have proposed an approximate

algorithm based on the uniform random sampling of possible
schedules. To study its effectiveness, we have implemented
a simulator and carried out a set of experiments illustrating
that even with a sample including a low number of combina-
tions, the algorithm provides with high probability a transfer
time much lower than the average transfer time.

REFERENCES
[1] F. Bouabache, T. Herault, G. Fedak, and F. Cappello, “Hier-

archical replication techniques to ensure checkpoint storage
reliability in grid environment,” in CCGRID ’08: Proceedings
of the 2008 Eighth IEEE International Symposium on Cluster
Computing and the Grid. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 475–483.

[2] R. Guillier, S. Soudan, and P. Vicat-Blanc Primet, “TCP
variants and transfer time predictability in very high speed
networks,” in Infocom 2007 High Speed Networks Workshop,
May 2007.

[3] L. Marchal, P. Primet, Y. Robert, and J. Zeng, “Optimizing
network resource sharing in grids,” in IEEE Global Telecom-
munications Conference GlobeCom’2005, 2005.

[4] H. Zhang, K. Keahey, and W. Allcock, “Providing data
transfer with qos as agreement-based service,” in SCC ’04:
Proceedings of the 2004 IEEE International Conference on
Services Computing. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 344–353.

[5] L. Marchaland, P. V.-B. Primet, Y. Robert, and J. Zeng, “Op-
timal bandwidth sharing in grid environment.” in 15th IEEE
International Conference on High Performance Distributed
Computing, 2006.

[6] B. Chen and P. V.-B. Primet, “Scheduling deadline-
constrained bulk data transfers to minimize network conges-
tion,” in CCGRID, 2007, pp. 410–417.

[7] K. Munir, P. Vicat-Blanc Primet, and M. Welzl, “Grid network
dimensioning by modeling the deadline constrained bulk data
transfers,” in 11th IEEE International Conference on High
Performance Computing and Communications (HPCC-09),
Seoul, Korea, June 2009.

[8] S. Soudan, R. Guillier, and P. V.-B. Primet, “End-host based
mechanisms for implementing flow scheduling in gridnet-
works,” in GridNets, 2007.

[9] J. Darbon, “Global optimization for first order markov random
fields with submodular priors,” Discrete Applied Mathemat-
ics, vol. 157, no. 16, pp. 3412 – 3423, 2009.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. Cambridge, MA: MIT
Press, 2001.

[11] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. V.-
B. Primet, E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, B. Quetier, and O. Richard, “Grid’5000: A large scale and
highly reconfigurable grid experimental testbed,” in SC’05:
Proc. The 6th IEEE/ACM International Workshop on Grid
Computing CD. Seattle, Washington, USA: IEEE/ACM,
Nov. 2005, pp. 99–106.

552

